Unmanned Aerial Vehicle (UAV) trajectory planning problem has always been a popular but still an open topic, where online planning is desired in unknown environments. This paper investigates how to combine human knowledge with reinforcement learning to train the UAV in a staged manner. With the novel framework we design, the UAV learns well to avoid densely arranged no-fly-zones and reach stationary or moving targets via calling the trained policy online. We demonstrate the advantages of our approach in terms of the flight time and the success rate of reaching target and avoiding no-fly-zones. The experimental results are performed in a set of new designed environments including dynamic no-fly-zones and moving targets.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Unmanned Aerial Vehicle Trajectory Planning via Staged Reinforcement Learning


    Beteiligte:
    Xi, Chenyang (Autor:in) / Liu, Xinfu (Autor:in)


    Erscheinungsdatum :

    01.09.2020


    Format / Umfang :

    2086654 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Collaborative Reinforcement Learning Based Unmanned Aerial Vehicle (UAV) Trajectory Design for 3D UAV Tracking

    Zhu, Yujiao / Chen, Mingzhe / Wang, Sihua et al. | ArXiv | 2024

    Freier Zugriff

    Adaptive Trajectory Planning for a Quad-rotor Unmanned Aerial Vehicle

    Chamseddine, A. / Rabbath, C.-A. / Zhang, Y. et al. | British Library Conference Proceedings | 2010


    Adaptive Trajectory Planning for a Quad-rotor Unmanned Aerial Vehicle

    Chamseddine, Abbas / Zhang, Youmin / Rabbath, Camille-Alain | AIAA | 2010