We propose a novel family of nonlinear diffusion equations and apply it to the problem of texture segmentation. This family can be viewed as an extension of stabilized inverse diffusion equations (SIDEs) which were proposed for restoration, enhancement, and segmentation of scalar-valued signals and images in I. Pollak et al. (2000). Our new diffusion equations can process vector-valued images defined on arbitrary graphs. In addition, we introduce novel ways of utilizing the shape information during the diffusion process. We demonstrate the effectiveness of our methods by showing that they outperform state-of-the-art algorithms on a large number of texture segmentation tasks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multiscale texture segmentation with vector-valued nonlinear diffusions on arbitrary graphs


    Beteiligte:
    Dong, X. (Autor:in) / Pollak, L. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    260765 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multiscale Texture Segmentation with Vector-Valued Nonlinear Diffusions on arbitrary Graphs

    Dong, X. / Pollak, I. | British Library Conference Proceedings | 2005


    Multiscale Annealing for Real-Time Unsupervised Texture Segmentation

    Puzicha, J. / Buhmann, J. M. / IEEE; Computer Society | British Library Conference Proceedings | 1998


    Boundary refinements for wavelet-domain multiscale texture segmentation

    Mor, E. / Aladjem, M. | British Library Online Contents | 2005


    Multiscale Annealing for Grouping and Unsupervised Texture Segmentation

    Puzicha, J. / Buhmann, J. M. | British Library Online Contents | 1999


    Nonlinear Multiscale Representations for Image Segmentation

    Niessen, W. J. / Vincken, K. L. / Weiekert, J. A. et al. | British Library Online Contents | 1997