This paper investigates a reinforcement learning based adaptive robustness parameter tunning approach for the virtual synchronous generator (VSG). Particularly, a deep Q-network (DQN) algorithm is employed to realize the real-time parameter tuning of inertia and damping coefficient in the VSG controller. The proposed parameter tuning approach is confirmed by the simulation results and compared with the conventional VSG controller with fixed parameters.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Q-Network based Adaptive Robustness Parameters for Virtual Synchronous Generator


    Beteiligte:
    Wu, Wenjie (Autor:in) / Guo, Feng (Autor:in) / Ni, Qiulong (Autor:in) / Liu, Xing (Autor:in) / Qiu, Lin (Autor:in) / Fang, Youtong (Autor:in)


    Erscheinungsdatum :

    28.10.2022


    Format / Umfang :

    706450 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Parallel Control of Auxiliary Inverter Based on Virtual Synchronous Generator

    Lu, Lei / Li, Xuefei / Kuang, Yang et al. | TIBKAT | 2020


    Parallel Control of Auxiliary Inverter Based on Virtual Synchronous Generator

    Lu, Lei / Li, Xuefei / Kuang, Yang et al. | Springer Verlag | 2020


    Parallel Control of Auxiliary Inverter Based on Virtual Synchronous Generator

    Lu, Lei / Li, Xuefei / Kuang, Yang et al. | British Library Conference Proceedings | 2020