Image road detection in unstructured environments is a crucial and challenging problem in the application of mobile robots and autonomous vehicles. In this paper, we present an effective and computationally efficient solution to segment the road region for structured and unstructured roads. We propose a new method that incorporates two different approaches: road detection based on the vanishing point and image segmentation using a seeded region growing (SRG) algorithm. First, a fast vanishing point detection algorithm is applied and used to find an estimation of the road boundaries. Subsequently, we segment the road area region executing a SRG algorithm based on the vanishing point and the road boundaries found previously. Evaluation of our method over different images datasets demonstrates that it is effective in challenging conditions such as dirt and curved roads.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-time method for general road segmentation


    Beteiligte:


    Erscheinungsdatum :

    01.06.2017


    Format / Umfang :

    323353 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Real-Time Method for General Road Segmentation

    Valente, Michelle / Stanciulescu, Bogdan | British Library Conference Proceedings | 2017


    Multi Path Real-time Semantic Segmentation Network in Road Scenarios

    Pengfei, Gao / Xiaolong, Tian / Cuihong, Liu et al. | Springer Verlag | 2025


    Real-Time Road Segmentation Using a Morphological Multi-Pipeline Processor

    Peyrard, R. / Gauthier, M. / Klein, J.-C. et al. | British Library Conference Proceedings | 1994


    Multi Path Real-time Semantic Segmentation Network in Road Scenarios

    Pengfei, Gao / Xiaolong, Tian / Cuihong, Liu et al. | Springer Verlag | 2025


    Evidence-Based Real-Time Road Segmentation With RGB-D Data Augmentation

    Xue, Feng / Chang, Yicong / Xu, Wenzhuang et al. | IEEE | 2025