Crowd counting is a valuable technology for extremely dense scenes in the transportation. Existing methods generally have higher-order inconsistencies between ground truth density maps and generated density maps. To address this issue, we incorporate an attentional discriminator to take charge of checking the density map between the generator and the ground truth. Thus, a Cascaded Attentional Generative Adversarial Network (CACrowdGAN) is proposed that enables the attentional-driven discriminator to distinguish implausible density maps and simultaneously to guide the generator to deliver fine-grained high quality density maps. The proposed CACrowdGAN consists of two components: an attentional generator and a cascaded attentional discriminator. The attentional generator has an attention module and a density module. The attention module is developed for the generator to focus on the crowd regions of the input images, while the density module is used to provide the attentional input of the discriminator. In addition, a cascaded attentional discriminator is proposed to synthesize attentional-driven fine-grained details at different crowd regions of the input image and compute a per-pixel fine-grained loss for training generator. The proposed CACrowdGAN achieves the state-of-the-art performance on five popular crowd counting datasets (ShanghaiTech, WorldEXPO’10, UCSD, UCF_CC_50 and UCF_QNRF), which demonstrates the effectiveness and robustness of the proposed approach in the complex scenes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    CACrowdGAN: Cascaded Attentional Generative Adversarial Network for Crowd Counting


    Beteiligte:
    Zhu, Aichun (Autor:in) / Zheng, Zhe (Autor:in) / Huang, Yaoying (Autor:in) / Wang, Tian (Autor:in) / Jin, Jing (Autor:in) / Hu, Fangqiang (Autor:in) / Hua, Gang (Autor:in) / Snoussi, Hichem (Autor:in)


    Erscheinungsdatum :

    01.07.2022


    Format / Umfang :

    4828846 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Crowd Counting Framework Combining with Crowd Location

    Jin Zhang / Sheng Chen / Sen Tian et al. | DOAJ | 2021

    Freier Zugriff

    WiFi-Crowd Spy: A novel crowd-counting system

    Collaguazo, Adriana / Estrada, Rebeca / Valeriano, Irving et al. | IEEE | 2022


    Generative adversarial network enriched driving simulation

    SONG HAO / PENG JUN / DENG NENGXIU et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Generative adversarial network enriched driving simulation

    SONG HAO / PENG JUN / DENG NENGXIU et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    GENERATIVE ADVERSARIAL NETWORK ENRICHED DRIVING SIMULATION

    SONG HAO / PENG JUN / DENG NENGXIU et al. | Europäisches Patentamt | 2020

    Freier Zugriff