In this paper, a semi-automatic system for the detection and classification of hypo echoic nodules in prostate transrectal ultrasound (TRUS) images using active contours identification and parabolic zone division is presented. First, a TRUS image is acquired, then the image is preprocessed using a median filter. After preprocessing, the image is segmented using active contours, then the different zones of the prostate are divided by a novel parabolic algorithm in two zones: transitional and peripheral. Finally, the stage of feature extraction is performed and the hypo echoic nodules are classified as low or high cancer risk. The experiments and results showed the ability of the system to detect hypo echoic nodules which can represent prostate cancer.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Hypoechoic Nodules Detection and Classification in TRUS Prostate Images Using Active Contours and Parabolic Zone Division




    Erscheinungsdatum :

    01.11.2012


    Format / Umfang :

    619473 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    TRUS & VLAR Update

    Kennedy, K. / Association for Unmanned Vehicle Systems | British Library Conference Proceedings | 1994


    Tilt Rotor UAV System (TRUS)

    Scholes, R. J. / Association for Unmanned Vehicle Systems International | British Library Conference Proceedings | 1995


    On modelling, extraction, detection and classification of contours from noisy images

    Lai, K. F. / Chin, R. T. | British Library Online Contents | 1998


    Lung Nodules Detection and Classification

    Campadelli, P. / Casiraghi, E. / Valentini, G. | British Library Conference Proceedings | 2005


    Lung nodules detection and classification

    Campadelli, P. / Casiraghi, E. / Valentini, G. | IEEE | 2005