The trajectory prediction of traffic agents plays an important role regarding to the safety of autonomous driving. Structured by gate recurrent unit (GRU), this paper proposes a new predict model with the combination of trajectory mapping method. The experimental results show that the proposed model can feasibly predict the future trajectories of the surrounding traffic agents in a mixed flow including vehicles, cyclists, and pedestrians.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Agent Trajectory Prediction Using a Time Sequence Deep Learning Model with Trajectory Mapping for Autonomous Driving


    Beteiligte:
    Hsu, Pei-Yun (Autor:in) / Huang, Mei-Lin (Autor:in) / Wang, Wei-Yen (Autor:in) / Chiang, Hsin-Han (Autor:in)


    Erscheinungsdatum :

    15.09.2021


    Format / Umfang :

    976715 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Agent Trajectory Prediction in Urban Traffic Environments via Deep Reward Learning

    Saleh, Khaled / Mihaita, Adriana-Simona / Chalup, Stephan | IEEE | 2024


    Intention-Driven Trajectory Prediction for Autonomous Driving

    Fan, Shiwei / Li, Xiangxu / Li, Fei | IEEE | 2021


    INTENTION-DRIVEN TRAJECTORY PREDICTION FOR AUTONOMOUS DRIVING

    Fan, Shiwei / Li, Xiangxu / Li, Fei | British Library Conference Proceedings | 2021


    Trajectory-Based Failure Prediction for Autonomous Driving

    Kuhn, Christopher B. / Hofbauer, Markus / Petrovic, Goran et al. | British Library Conference Proceedings | 2021