A sideslip angle fusion estimation strategy of the three-axis vehicle based on an adaptive cubature Kalman filter (ACKF) is investigated in this article. According to the dynamics model, kinematics model of the three-axis vehicle, and considering the influence of tire nonlinearity, the vehicle state estimators under different conditions are designed by using the ACKF algorithm. The dynamic-model-based estimator with linear tire model, a dynamic-model-based estimator with nonlinear tire model, and a kinematical-model-based estimator (KE) are proposed, then, according to the application characteristics of different estimators, a fusion estimation strategy of vehicle sideslip angle based on adaptive fuzzy weight controllers is designed, so as to improve the overall estimation accuracy by integrating the advantages of the three estimators. The simulation and experimental results show that the presented fusion estimation strategy can effectively improve the estimation accuracy of vehicle sideslip angle, and the comprehensive estimation accuracy reaches 94.37%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Sideslip Angle Fusion Estimation Method of Three-Axis Autonomous Vehicle Based on Composite Model and Adaptive Cubature Kalman Filter


    Beteiligte:
    Chen, Te (Autor:in) / Cai, Yingfeng (Autor:in) / Chen, Long (Autor:in) / Xu, Xing (Autor:in)


    Erscheinungsdatum :

    01.03.2024


    Format / Umfang :

    1829056 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Sideslip angle estimation using extended Kalman filter

    Chen, B.-C. / Hsieh, F.-C. | Taylor & Francis Verlag | 2008


    Sideslip angle estimation using extended Kalman filter

    Chen,B.C. / Hsieh,F.C. / Nat.Taipei Univ.of Technol.,TW | Kraftfahrwesen | 2008


    Nonlinear estimation of vehicle sideslip angle based on adaptive extended Kalman filter

    Gao,X. / Yu,Z. / Shanghai Automotive Industry,SAIC,CN et al. | Kraftfahrwesen | 2010