We develop a method to detect atypical traffic jams in the City of Boston. Our motivation is to detect these traffic jams which are often caused by some event (e.g., accident, lane closure, etc.) and enable the City to intervene before congestion spreads and adjacent roads are negatively affected. Using a traffic jam dataset provided by the City of Boston, we present a novel detection system for anomalous jam identification. We demonstrate its effectiveness by using it to identify traffic jams that cannot be explained by typical traffic patterns.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Anomaly detection in transportation networks using machine learning techniques




    Erscheinungsdatum :

    01.11.2017


    Format / Umfang :

    2087114 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Anomaly detection using machine learning

    SHAHBAZI AVARVAND FOROOZ | Europäisches Patentamt | 2023

    Freier Zugriff

    ANOMALY DETECTION USING MACHINE LEARNING

    SHAHBAZI AVARVAND FOROOZ | Europäisches Patentamt | 2021

    Freier Zugriff


    Using Machine Learning for Advanced Anomaly Detection and Classification

    Lane, Ben | British Library Conference Proceedings | 2016


    Continuous fields: Enhanced in-vehicle anomaly detection using machine learning models

    Fenzl, Florian / Rieke, Roland / Chevalier, Y. et al. | Fraunhofer Publica | 2020

    Freier Zugriff