Concerning the fuel cell electric vehicles, the multi-stack fuel cell system (MFCS) offers superior performance and reliability over single stack fuel cell system. In order to obtain the lowest hydrogen consumption, this paper proposes a power allocation strategy using the Particle Swarm Optimization (PSO) algorithm. The MFCS is composed of two 300 W fuel cell stacks and a 360 Wh battery. The simulation results have shown that the performance of the proposed strategy can achieve more satisfactory results in terms of minimizing hydrogen consumption and managing the battery state of charge, compared to the equidistributional method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Hydrogen consumption minimization with optimal power allocation of multi-stack fuel cell system using particle swarm optimization


    Beteiligte:
    Bouisalmane, Noureddine (Autor:in) / Wang, Tianhong (Autor:in) / Breaz, Elena (Autor:in) / Doubabi, Said (Autor:in) / Paire, Damien (Autor:in) / Oubraham, Jorn (Autor:in) / Levy, Michael (Autor:in) / Gao, Fei (Autor:in)


    Erscheinungsdatum :

    21.06.2021


    Format / Umfang :

    1805357 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Particle Swarm Optimization Algorithm to Solve Vehicle Routing Problem with Fuel Consumption Minimization

    Baiq Nurul Izzah Farida Ramadhani / Annisa Kesy Garside | DOAJ | 2021

    Freier Zugriff

    Particle Swarm Optimization Algorithm to Solve Vehicle Routing Problem with Fuel Consumption Minimization

    Ramadhani, Baiq Nurul Izzah Farida / Garside, Annisa Kesy | BASE | 2021

    Freier Zugriff

    Particle Swarm Optimization Algorithm to Solve Vehicle Routing Problem with Fuel Consumption Minimization

    Baiq Nurul Izzah Farida Ramadhani / Annisa Kesy Garside | DOAJ | 2021

    Freier Zugriff


    Multi-Stack Fuel Cell System Stacks Allocation Optimization Based on Genetic Algorithms

    Zhou, Su / Zhang, Gang / Wang, Zixiang et al. | British Library Conference Proceedings | 2022