For mission planners and evaluators alike, value in cost models comes from a mean or median prediction, an understanding of the uncertainty on that prediction, and an understanding of model performance. Here we apply advanced statistical and machine learning methods to spacecraft flight software cost, effort, and SLOC estimation, and present the results in the latest version of the Analogy Software Cost Tool (ASCoT). We present in- and out-of-sample performance metrics for our models, each of which incorporate some amount of epistemic uncertainty. ASCoT, hosted on the One NASA Cost Engineering (ONCE) database via the Online NASA Space Estimation Tool (ONSET), was first showcased in 2016 as a number of analogy-based models and methods (k NN and Clustering) to support early project formulation. This ASCoT update improves upon the previous analogic methods by incorporating uncertainty in the data transformations. In particular, we use a Nonlinear Principal Components Analysis (NLPCA) to deal with ordinal data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    ASCoT 3: Nonlinear Principal Components Analysis and Uncertainty Quantification in Early Concept Spacecraft Flight Software Cost Estimation


    Beteiligte:
    Fleischer, Sam (Autor:in) / Bjornstad, Patrick (Autor:in) / Hihn, Jairus (Autor:in) / Johnson, James (Autor:in)


    Erscheinungsdatum :

    04.03.2023


    Format / Umfang :

    1928630 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    ASCot: the official release a web-based flight software estimation tool

    Johnson, James / Youmans, Tom / Saing, Michael et al. | NTRS | 2017




    Jaguar Bertone XJS Ascot

    Bertone,IT / Jaguar,GB | Kraftfahrwesen | 1977


    Bertone Jaguar XJS Ascot

    Bertone,IT / British Leyland,Jaguar,GB | Kraftfahrwesen | 1977