A method derived from the Sequential Monte Carlo approaches is proposed here to solve the vehicle detection and tracking problem using a scanning laser rangefinder. The originality of this approach lies in a joint detection and tracking of the objects that avoid the usual pre-detection stage. The proposed modeling is strongly nonlinear. To improve the efficiency of the solution, we use a Rao-Blackwell particle filter: the non-linearity of the state-space equations is taken into account by a particle filter and the linearity is optimally processed by a Kalman filter. The solution of the proposed modeling is based on a matched filter (to the object) which uses a predefined vehicle model. A central point here is to calculate the weights of the matched particle filter according to the vehicle model. The efficiency of the method is shown in terms of estimation accuracies and detection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Model-based detection and tracking of vehicle using a scanning laser rangefinder: A particle filtering approach


    Beteiligte:


    Erscheinungsdatum :

    01.06.2012


    Format / Umfang :

    706414 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Model-Based Detection and Tracking of Vehicle Using a Scanning Laser Rangefinder: A Particle Filtering Approach

    Noyer, J.C. / Wahl, M. / Vanpoperinghe, E. et al. | British Library Conference Proceedings | 2012



    Laser rangefinder

    Engineering Index Backfile | 1963


    Laser rangefinder sensor

    FOWLER KEITH / LAI NAN-MING | Europäisches Patentamt | 2015

    Freier Zugriff

    Scanning Laser Rangefinder for Accurate Arm Placement and Inspection

    Bualat, M. / Kunz, C. / Lavelle, J. et al. | British Library Conference Proceedings | 2005