Model-based approaches for target tracking and smoothing estimate the infinite number of possible target trajectories using a finite set of models. This article proposes a data-driven approach that represents the possible target trajectories using a distribution over an infinite number of functions. Recursive Gaussian process, and derivative-based Gaussian process approaches for target tracking, and smoothing are developed, with online training, and parameter learning. The performance evaluation over two highly maneuvering scenarios, shows that the proposed approach provides 80 and 62% performance improvement in the position, and 49 and 22% in the velocity estimation, respectively, as compared to the best model-based filter.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    A Learning Gaussian Process Approach for Maneuvering Target Tracking and Smoothing


    Beteiligte:


    Erscheinungsdatum :

    01.02.2021


    Format / Umfang :

    1739738 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Maneuvering target tracking with non-Gaussian noise

    Song Xiaoquan / Sun Zhongkang | IEEE | 1997



    Maneuvering target tracking via smoothing and filtering through measurement concatenation

    CLOUTIER, JAMES / LIN, CHING-FANG / YANG, CHUN | AIAA | 1991


    Maneuvering target tracking via smoothing and filtering through measurement concatenation

    CLOUTIER, JAMES R. / LIN, CHING-FANG / YANG, CHUN | AIAA | 1993


    IMM Forward Filtering and Backward Smoothing for Maneuvering Target Tracking

    Nadarajah, N. / Tharmarasa, R. / McDonald, M. et al. | IEEE | 2012