This paper presents a study on the control of unmanned bicycle motion based on inertial wheels in the pybullet physics simulation environment. To address the nonlinear and strongly coupled nature of unmanned bicycles, the Proximal Policy Optimization deep reinforcement learning algorithm is employed in this study to achieve stable motion control of the bicycle. Two sets of independent reward functions are designed for balancing and path tracking of the unmanned bicycle to improve control effectiveness. Simulation results demonstrate that the designed control strategy can effectively maintain the balance of the unmanned bicycle and accurately track the desired path. This research provides a novel approach and insight into the intelligent control of unmanned bicycles, showcasing the application potential of reinforcement learning-based motion control in highly complex systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on Bicycle Motion Control Based on Reinforcement Learning


    Beteiligte:
    Deng, Hang (Autor:in) / Chen, Xiai (Autor:in) / Dong, Mingze (Autor:in) / Yang, Jongkun (Autor:in)


    Erscheinungsdatum :

    26.07.2024


    Format / Umfang :

    448081 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Natural Residual Reinforcement Learning for Bicycle Robot Control

    Zhu, Xianjin / Zheng, Xudong / Zhang, Qiyuan et al. | British Library Conference Proceedings | 2021


    Bicycle component motion control

    HO ALEXANDER KON-I / HAHN SAGE / KIM SANG | Europäisches Patentamt | 2020

    Freier Zugriff

    BICYCLE COMPONENT MOTION CONTROL

    HO ALEXANDER KON-I / HAHN SAGE / KIM SANG | Europäisches Patentamt | 2023

    Freier Zugriff

    BICYCLE COMPONENT MOTION CONTROL

    HO ALEXANDER KON-I / HAHN SAGE / KIM SANG | Europäisches Patentamt | 2020

    Freier Zugriff

    Bicycle component motion control

    HO ALEXANDER KON-I / HAHN SAGE / KIM SANG | Europäisches Patentamt | 2022

    Freier Zugriff