Among the four classes of cooperative driving automation defined in [1], agreement-seeking cooperation appears to be a promising option for achieving higher cooperation levels with general passenger vehicles. Because agreement-seeking cooperation allows connected and automated vehicles (CAVs) to decide whether or not to participate in cooperative driving, it is necessary for CAVs to have intelligent decision-making strategies. This work develops a farsighted, interaction-aware decision-making strategy using multi-agent reinforcement learning (MARL). A MARL system is formulated with unique state and action spaces reflecting agreement-seeking interactions. A state–action–reward–state–action (SARSA) algorithm is applied to learn the action-value function of each CAV. Simulation results show that using a MARL-based decision-making strategy increases agreement rates by 52% on average and cooperation time by 50%. The higher cooperation rates lead to higher energy efficiency: 5.5% more energy saving than heuristic decision-making.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Decision-Making Strategy Using Multi-Agent Reinforcement Learning for Platoon Formation in Agreement-Seeking Cooperation


    Beteiligte:


    Erscheinungsdatum :

    04.06.2023


    Format / Umfang :

    1320354 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Multi-Agent Navigation with Reinforcement Learning Enhanced Information Seeking

    Zhang, Siwei / Guerra, Anna / Guidi, Francesco et al. | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2022

    Freier Zugriff


    Intersection decision-making method based on multi-agent deep reinforcement learning

    DU YU / JIANG ANNI / ZHAO SHIXIN et al. | Europäisches Patentamt | 2024

    Freier Zugriff