Adverse weather conditions and occlusions in urban environments result in impaired perception. The un-certainties are handled in different modules of an automated vehicle, ranging from sensor level over situation prediction until motion planning. This paper focuses on motion planning given an uncertain environment model with occlusions. We present a method to remain collision free for the worst-case evolution of the given scene. We define criteria that measure the available margins to a collision while considering visibility and interactions and consequently integrate conditions that apply these criteria into an optimization-based motion planner. We show the generality of our method by validating it in several distinct urban scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Limited Visibility and Uncertainty Aware Motion Planning for Automated Driving


    Beteiligte:


    Erscheinungsdatum :

    01.06.2018


    Format / Umfang :

    5373615 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    LIMITED VISIBILITY AND UNCERTAINTY AWARE MOTION PLANNING FOR AUTOMATED DRIVING

    Taş, Ömer Şahin / Stiller, Christoph | British Library Conference Proceedings | 2018


    Uncertainty-Aware Behavior Planning in Automated Driving

    Bey, Henrik | TIBKAT | 2024

    Freier Zugriff

    Uncertainty-Aware Motion Planning for Autonomous Driving on Highway

    Yang, Kai / Tang, Xiaolin / Wang, Ming et al. | IEEE | 2022


    Uncertainty-adaptive, risk based motion planning in automated driving

    Hruschka, Clemens Markus / Schmidt, Michael / Topfer, Daniel et al. | IEEE | 2019