Most existing reinforcement learning-based traffic signal control approaches overlook vehicle-specific information in the state representation. This study addresses this gap by integrating real-time driving style information into the deep reinforcement learning (DRL) framework. We introduce a model-based framework that captures real-time driving styles and converts them into Intelligent Driver Model (IDM) parameters. Our proposed method demonstrates superior performance across various reinforcement algorithms and traffic flow scenarios, with statistical tests confirming a significant reduction in average queue length. The contributions of this paper can be summarized as follows: 1) proposing a model-based method for real-time driving style recognition, significantly reducing the requirements for trajectory data duration and computational resources, and 2) proposing a new state variable called transformed occupancy ( $o^{*}$ ) that allows the DRL-based traffic signal controller to be trained with driving style information, thereby enhancing the performance of the traffic signal control system. The proposed framework is so flexible that other car-following models, machine learning algorithms, and various downstream tasks can be incorporated.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-Time Driving Style Integration in Deep Reinforcement Learning for Traffic Signal Control


    Beteiligte:
    Xu, Tu (Autor:in) / Pang, Yuqi (Autor:in) / Zhu, Yongdong (Autor:in) / Ji, Wei (Autor:in) / Jiang, Rui (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.08.2025


    Format / Umfang :

    1609499 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Deep Reinforcement Learning-based Traffic Signal Control

    Ruan, Junyun / Tang, Jinzhuo / Gao, Ge et al. | IEEE | 2023


    Deep Reinforcement Learning-Based Traffic Signal Control

    Hu, Penghui / Zhang, Xinran / Hu, Jianming | ASCE | 2024


    A Deep Reinforcement Learning Approach to Traffic Signal Control

    Razack, Aquib Junaid / Ajith, Vysyakh / Gupta, Rajiv | IEEE | 2021



    Traffic signal control method based on deep reinforcement learning

    LIU DUANYANG / SHEN SI / SHEN GUOJIANG et al. | Europäisches Patentamt | 2021

    Freier Zugriff