Trajectory planning for autonomous driving is challenging because the unknown future motion of traffic participants must be accounted for, yielding large uncertainty. Stochastic Model Predictive Control (SMPC)-based planners provide non-conservative planning, but do not rule out a (small) probability of collision. We propose a control scheme that yields an efficient trajectory based on SMPC when the traffic scenario allows, still avoiding that the vehicle causes collisions with traffic participants if the latter move according to the prediction assumptions. If some traffic participant does not behave as anticipated, no safety guarantee can be given. Then, our approach yields a trajectory which minimizes the probability of collision, using Constraint Violation Probability Minimization techniques. Our algorithm can also be adapted to minimize the anticipated harm caused by a collision. We provide a thorough discussion of the benefits of our novel control scheme and compare it to a previous approach through numerical simulations from the CommonRoad database.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Safe and Non-Conservative Trajectory Planning for Autonomous Driving Handling Unanticipated Behaviors of Traffic Participants


    Beteiligte:
    Benciolini, Tommaso (Autor:in) / Fink, Michael (Autor:in) / Guzelkaya, Nehir (Autor:in) / Wollherr, Dirk (Autor:in) / Leibold, Marion (Autor:in)


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    919898 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    SAFE NON-CONSERVATIVE PLANNING FOR AUTONOMOUS VEHICLES

    BAKER CHRIS L / HUANG HUNG-JUI / ZHAO YIBIAO et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Safe non-conservative planning for autonomous vehicles

    BAKER CHRIS L / HUANG HUNG-JUI / ZHAO YIBIAO et al. | Europäisches Patentamt | 2024

    Freier Zugriff


    Safe motion planning method for autonomous vehicle considering driving behaviors

    TANG XIAOLIN / CHENG LIANG / YANG KAI et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Safe and Personalizable Logical Guidance for Trajectory Planning of Autonomous Driving

    Xu, Yuejiao / Wang, Ruolin / Xu, Chengpeng et al. | ArXiv | 2024

    Freier Zugriff