We propose SURF-LSTM, a low complexity deep architecture to learn image absolute pose (position and orientation) in indoor environments using SURF descriptors and recurrent neural networks. Given the strongest SURF features descriptors of an input image, we use 2 layers of bidirectional long short term memory (LSTM) to model the sequential relation between them to learn the 6 degrees of freedom absolute pose in an arbitrary reference frame. In addition to achieving competitive performance compared to existing image localization methods, our system can be trained in less than 10 minutes instead of hours by the state of the art. It requires as small as 0.0128 MB to save the image frame rather than 0.08 MB compared to other methods that use the cropped images and the weights file needs 1.5 MB of storage compared to 100 MB of other methods which leads to significant time and space efficiency.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    SURF-LSTM: A Descriptor Enhanced Recurrent Neural Network For Indoor Localization


    Beteiligte:
    Elmoogy, Ahmed (Autor:in) / Dong, Xiaodai (Autor:in) / Lu, Tao (Autor:in) / Westendorp, Robert (Autor:in) / Reddy, Kishore (Autor:in)


    Erscheinungsdatum :

    01.11.2020


    Format / Umfang :

    1140318 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    LSTM recurrent neural network assisted aircraft stall prediction for enhanced situational awareness

    Saniat, Tahsin Sejat / Goni, Tahiat / Galib, Shaikat M. | ArXiv | 2020

    Freier Zugriff

    Short-term traffic flow prediction with LSTM recurrent neural network

    Kang, Danqing / Lv, Yisheng / Chen, Yuan-yuan | IEEE | 2017


    Exploring LSTM based recurrent neural network for failure time series prediction

    Wang, Xin / Wu, Ji / Liu, Chao et al. | British Library Online Contents | 2018


    Vehicle Trajectory Prediction based on LSTM Recurrent Neural Networks

    Ip, Andre / Irio, Luis / Oliveira, Rodolfo | IEEE | 2021