In multi-user multi-input single-output (MU-MISO) cellular networks, beamforming is an effective way to manage the inter-cell interference and intra-cell interference, and improve the achievable rate. However, finding the optional beamforming solution needs a centralized structure, which may be impractical in realistic scenario. In this paper, a distributed deep reinforcement learning (DRL) based beamforming algorithm is proposed in which each base station (BS) uses DRL to select the beamformers for its intended users in each cell. Besides, the channel orthogonality measure among intended users, on behalf of the intra-cell interference, is used as the state element of the DRL. Moreover, by applying the proposed method, the number of action elements can be reduced, thus the training complexity decreased. Compared with the benchmark algorithm, the simulation results demonstrate that this scheme could improve the system achievable rate. In a word, this paper provides another way for optimizing the beamforming problem in MU-MISO systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Beamforming in Multi-User MISO Cellular Networks with Deep Reinforcement Learning


    Beteiligte:
    Chen, Hongchao (Autor:in) / Zheng, Zhe (Autor:in) / Liang, Xiaohui (Autor:in) / Liu, Yupu (Autor:in) / Zhao, Yi (Autor:in)


    Erscheinungsdatum :

    01.04.2021


    Format / Umfang :

    2299771 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Deep Reinforcement Learning based Analog Beamforming Approach in Downlink MISO Systems

    Zhou, Hang / Wang, Xiaoyan / Umehira, Masahiro et al. | IEEE | 2022



    Deep reinforcement learning for hybrid beamforming in multi-user millimeter wave wireless systems

    Lizarraga, Enrique M. / Maggio, Gabriel N. / Dowhuszko, Alexis A. | IEEE | 2021


    Energy Efficient Beamforming for Multi-Cell MISO SWIPT Systems

    Jang, Seokju / Lee, Hoon / Kang, Seowoo et al. | IEEE | 2018


    Transmit Beamforming Designs for Secure Transmission in MISO-NOMA Networks

    Zhang, Yanbo / Yang, Zheng / Cui, Jingjing et al. | IEEE | 2022