Pedestrian trajectory prediction has an important impact on the construction of smart cities and the popularization of autonomous vehicles. Pedestrian trajectory prediction in complex scenes is challenging because the trajectories are largely disturbed by the surrounding social environment. To better model the relationship between pedestrians and the social environment, we propose a novel Multi-Relation Network based on Long Short-Term Memory(LSTM). We first use Convolution Neural Network(CNN) and LSTM for feature extraction of scenes and pedestrians respectively. We realize the interaction between pedestrians and social environment by introducing attention mechanism. The experiment results on two public datasets, i.e. ETH and UCY, demonstrate that the prediction accuracy can be effectively improved by considering the social interactions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-Relational Pedestrian Trajectory Prediction in Complex Scenes


    Beteiligte:
    Peng, Wenshuo (Autor:in) / Cui, Zhoujuan (Autor:in) / Duan, Yiping (Autor:in) / Tao, Xiaoming (Autor:in)


    Erscheinungsdatum :

    01.09.2022


    Format / Umfang :

    877012 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Understanding Pedestrian Behavior in Complex Traffic Scenes

    Rasouli, Amir / Kotseruba, Iuliia / Tsotsos, John K. | IEEE | 2018



    Trajectory prediction on top-down scenes

    HONG XI JOEY / SAPP BENJAMIN JOHN | Europäisches Patentamt | 2021

    Freier Zugriff

    TRAJECTORY PREDICTION ON TOP-DOWN SCENES

    HONG XI JOEY / SAPP BENJAMIN JOHN | Europäisches Patentamt | 2020

    Freier Zugriff

    Pedestrian trajectory prediction method and device

    ZHENG WEN / LIU CHUANG / XU GUANGYU et al. | Europäisches Patentamt | 2023

    Freier Zugriff