In order to evaluate the optimization efficiency of Genetic Algorithms (GA), this paper presents an efficiency evaluation criterion based on average optimization generation and time efficiency of GA, which not only can avoid infection evaluating the efficiency of GA on random factors commendably, but also consider the time firstly. So that it provides gist of evaluation criterion and theory for selecting the efficient GA parameters. According to this criterion, we have made an evaluation and analysis for GA’s efficiency influence about the population size, crossover probability and mutation probability. Based on the statistical of function F2, simulation result shows the highest efficiency when GA’s population size, crossover probability, mutation probability are 30, 0.7∼0.8, 0.001∼0.05 respectively.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on optimization efficiency of Genetic Algorithms


    Beteiligte:
    Liu, Sheng (Autor:in) / Li, Gao-yun (Autor:in) / Song, Jia (Autor:in) / Sun, Tian-ying (Autor:in)


    Erscheinungsdatum :

    01.12.2008


    Format / Umfang :

    595658 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Trajectory Planning Optimization using Genetic Algorithms

    Angarita, John E. / Black, Jonathan | AIAA | 2016


    Control system optimization using genetic algorithms

    KRISHNAKUMAR, K. / GOLDBERG, DAVID E. | AIAA | 1992


    Genetic Algorithms Applied on Route Optimization

    de Oliveira Chaves, Rodrigo | SAE Technical Papers | 1999