This paper presents a new similarity measure method on a combination of color and texture feature representations. In this method, the YIQ color space is chosen, because it can describe both color images and gray images and the transform from RGB to YIQ is linear and simple than other color space. In the proposed method, we firstly segment image using texture feature by combination of wavelet transform and texture co-occurrence matrix and then quantize color feature in YIQ color space for every segme- ntation partition. Based on image segmentation and color quantization, a new kind of similarity measure is proposed. Compared with the traditional image retrieval methods, the proposed method is very efficient for the image retrieval purpose.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Robust Similarity Measure Method in CBIR System


    Beteiligte:
    Yang, Guang (Autor:in) / Xiao, Yingyuan (Autor:in)


    Erscheinungsdatum :

    01.05.2008


    Format / Umfang :

    462465 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Qatris iManager: a general purpose CBIR system

    Barrena, M. | British Library Online Contents | 2015


    Robust Class Similarity Measure for Traffic Sign Recognition

    Ruta, A / Yongmin Li, / Xiaohui Liu, | IEEE | 2010


    Dominant Color Region based Indexing for CBIR

    Ravishankar, K. / Prasad, B. / Gupta, S. et al. | British Library Conference Proceedings | 1999


    Dominant color region based indexing for CBIR

    Ravishankar, K.C. / Prasad, B.G. / Gupta, S.K. et al. | IEEE | 1999


    Feature Selection Based on Genetic Algorithm for CBIR

    Zhao, Tianzhong / Lu, Jianjiang / Zhang, Yafei et al. | IEEE | 2008