Rapid advancements in driver assistance technology will lead to the integration of fully autonomous vehicles on our roads that will interact with other road users. To address the problem that driverless vehicles make interaction through eye contact impossible, we describe a framework for estimating the crossing intentions of pedestrians in order to reduce the uncertainty that the lack of eye contact between road users creates. The framework was deployed in a real vehicle and tested with three experimental cases that showed a variety of communication messages to pedestrians in a shared space scenario. Results from the performed field tests showed the feasibility of the presented approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Autonomous Driving: Framework for Pedestrian Intention Estimation in a Real World Scenario




    Erscheinungsdatum :

    19.10.2020


    Format / Umfang :

    2278563 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    AUTONOMOUS DRIVING: FRAMEWORK FOR PEDESTRIAN INTENTION ESTIMATION IN A REAL WORLD SCENARIO

    Morales-Alvarez, Walter / Moreno, Francisco Miguel / Sipele, Oscar et al. | British Library Conference Proceedings | 2020


    Autonomous Driving: Framework for Pedestrian Intention Estimationin a Real World Scenario

    Alvarez, Walter Morales / Moreno, Francisco Miguel / Sipele, Oscar et al. | ArXiv | 2020

    Freier Zugriff

    A Framework for Driving Intention Estimation in Real-World Scenarios

    Huang, He / Zeng, Zheni / Shangguan, Yifan et al. | ASCE | 2020


    A Framework for Driving Intention Estimation in Real-World Scenarios

    Huang, He / Zeng, Zheni / Shangguan, Yifan et al. | TIBKAT | 2020


    Pedestrian Detection with YOLOv5 in Autonomous Driving Scenario

    Jin, Xianjian / Li, Zhiwei / Yang, Hang | IEEE | 2021