Non-orthogonal multiple access (NOMA) is a promising technology for future mobile networks due to superior spectrum efficiency. In this paper, we model the interaction between the base station and multiple users as a Stackelberg game and devise a fast resource allocation method consisting of resource block allocation and power allocation. The objective is to serve as many users as possible at rates beyond their requirements, while seeking to enhance total revenue. We derive a closed-form formula for optimal power allocation. Besides, we convert the resource block allocation problem into the problem of finding a maximum weight independent set for a chordal graph, which only takes linear time. Simulation results show that the fast method we propose outperforms existing algorithms in total throughput and the number of users whose rate demands are attained.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fast Resource Allocation for Downlink NOMA Based on Revenue and Chordal Graphs


    Beteiligte:
    Huang, Yu-Wen (Autor:in) / Teng, Shao-Ming (Autor:in) / Kao, Jung-Chun (Autor:in) / Lo, Yi-Chia (Autor:in)


    Erscheinungsdatum :

    01.04.2019


    Format / Umfang :

    443752 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Adaptive Resource Allocation for ICIC in Downlink NOMA Systems

    Lee, Chien-Hao / Kobayashi, Makoto / Wei, Hung-Yu et al. | IEEE | 2019


    Resource Allocation in Downlink Multicarrier NOMA under a Fairness Constraint

    Cejudo, Estela Carmona / Zhu, Huiling / Wang, Jiangzhou | IEEE | 2020


    Energy Efficient Resource Allocation in Downlink Non-Orthogonal Multiple Access (NOMA) System

    Al-Abbasi, Ziad Qais / So, Daniel K. C. / Tang, Jie | IEEE | 2017



    On the Power Allocation and Constellation Selection in Downlink NOMA

    Cejudo, Estela Carmona / Zhu, Huiling / Alluhaibi, Osama | IEEE | 2017