For signals containing discontinuities, the usual assumptions of Gauss-Markov distributed signal sources do not hold. To preserve edges, non-Gaussian prior models have been developed for use in Bayesian restoration. These models are generally dependent upon two parameters, one controlling the size of reconstructed discontinuities, and the other controlling data smoothing. The authors propose a maximum likelihood technique for automatically estimating these parameters, resulting in the optimization of an expression dependent upon the prior model partition function. An exact expression is derived for the 1D signal model partition function, while an approximation is proposed for the 2D image model partition function. Parameters estimated from degraded signals result in high quality restorations.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Maximum likelihood parameter estimation for non-Gaussian prior signal models


    Beteiligte:
    Schultz, R.R. (Autor:in) / Stevenson, R.L. (Autor:in) / Lumsdaine, A. (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    437416 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Maximum Likelihood Parameter Estimation for Non-Gaussian Prior Signal Models

    Schultz, R. R. / Stevenson, R. L. / Lumsdaine, A. et al. | British Library Conference Proceedings | 1994


    Parameter Estimation via Gaussian Processes and Maximum Likelihood Estimation

    West, N. / Swiler, L. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2010



    GPS Signal Tracking Using Maximum Likelihood Parameter Estimation

    Gustafson, D. / Institute of Navigation | British Library Conference Proceedings | 1996