Dynamic vehicle tracking is an important module for Autonomous Land Vehicle (ALV) navigation in outdoor environments. The key step for a successful tracker is to accurately estimate the pose of the vehicle. In this paper, we present a novel real-time vehicle pose estimation algorithm based on the likelihood field model built on the Velodyne LIDAR data. The likelihood field model is adopted to weight the particles, which represent the potential poses, drawn around the location of the target vehicle. Importance sampling which is speeded up with the Scaling Series algorithm, is then exploited to choose the best particle as the final vehicle's pose. The performance of the algorithm is validated on the data collected by our own ALV in various urban environments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Likelihood-Field-Model-Based Vehicle Pose Estimation with Velodyne


    Beteiligte:
    Chen, Tongtong (Autor:in) / Dai, Bin (Autor:in) / Liu, Daxue (Autor:in) / Fu, Hao (Autor:in) / Song, Jinze (Autor:in) / Wei, Chongyang (Autor:in)


    Erscheinungsdatum :

    01.09.2015


    Format / Umfang :

    3869325 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Velodyne SLAM

    Moosmann, F. / Stiller, C. | IEEE | 2011


    Velodyne SLAM

    Moosmann, F. / Stiller, C. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2011


    Multiple Vehicle-like Target Tracking Based on the Velodyne LiDAR

    Zhang, Liang / Li, Qingquan / Li, Ming et al. | Tema Archiv | 2013


    UAS TOPOGRAPHIC MAPPING WITH VELODYNE LiDAR SENSOR

    G. Jozkow / C. Toth / D. Grejner-Brzezinska | DOAJ | 2016

    Freier Zugriff