The use of Markov random fields (MRFs) in color image segmentation of natural outdoor scenes is discussed. MRFs provide an elegant means of specifying a local energy function which embodies the expected dependencies of neighboring pixels and includes both the prior and posterior probabilistic distributions. This local neighborhood-based specification of dependencies avoids ad hoc brittle methods using global image knowledge. A brief analysis of ongoing research in color differencing methods is presented, since they are central to the problem of color segmentation. The authors develop and compare the use of three different lattice structures for coupled MRFs with line and color processes based on squares, hexagons, and triangles, and also discusses current efforts in MRF parameter understanding.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Color image segmentation using Markov random fields


    Beteiligte:
    Daily, M.J. (Autor:in)


    Erscheinungsdatum :

    01.01.1989


    Format / Umfang :

    1127824 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Markov random field image segmentation model for color textured images

    Kato, Z. / Pong, T. C. | British Library Online Contents | 2006


    Unsupervised image segmentation using triplet Markov fields

    Benboudjema, D. / Pieczynski, W. | British Library Online Contents | 2005


    Segmentation of Rumex obtusifolius using Gaussian Markov random fields

    Hiremath, S. | British Library Online Contents | 2013


    Parameter Estimation in Hidden Fuzzy Markov Random Fields and Image Segmentation

    Salzenstein, F. / Pieczynski, W. | British Library Online Contents | 1997


    Bayesian image classification using Markov random fields

    Berthod, M. / Kato, Z. / Yu, S. et al. | British Library Online Contents | 1996