Better vehicle safety prediction for potential road accidents ultimately will avoid human fatalities. Designing an accurate and effective pre-crash system to avoid front and back crashes or mitigating crash severity is the priority goal of any vehicle safety system. To improve crash prediction, vehicle context is collected to analyze the severity of a crash based on safe avoidance time between two vehicles. This work proposes a real time crash prediction based on TGFD Crash Severity Factor model for Periodic Safety Message dissemination protocol in VANET. Simulation results show promising improvements for dissemination of PSMs to the vehicles for prevention of road accidents in highway scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Crash Avoidance Based Periodic Safety Message Dissemination Protocol for Vehicular Ad Hoc Network




    Erscheinungsdatum :

    01.04.2019


    Format / Umfang :

    369792 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch