Vehicular networks provide the roadside connectivity and facilitate the requested information among users while driving. It connects a large number of vehicles with hierarchical infrastructure elements for the use of various vehicle control and the traffic control that is real-time. Applications demand better sharing of the information as the density of vehicles and information is increasing. The efficiency of information selection and the retrieval of traffic information is determined by decisions made in the past and present. When a driver uses the traffic and vehicle management program, this prevents extraneous information from getting in the way. By presenting a framework for the network of vehicles which makes use of SDN with 5G and fog computing, this research offers a safe information exchange paradigm that combines faster data transfer speeds with security.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    5G-LRVN: Latency Reduction Framework for SDVN using Fog Computing


    Beteiligte:
    Tandon, Righa (Autor:in) / Verma, Ajay (Autor:in) / Gupta, P.K. (Autor:in)


    Erscheinungsdatum :

    23.08.2024


    Format / Umfang :

    580898 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    SDVN-Based Smart Data Dissemination Model for High-Speed Road Networks

    Garg, Deepanshu / Garg, Neeraj / Bali, Rasmeet Singh et al. | Springer Verlag | 2021



    Latency Modeling for Mobile Edge Computing Using LTE Measurements

    Volos, Haris / Bando, Takashi / Konishi, Kenji | IEEE | 2018


    Partial sensor data processing for latency reduction

    GU TONGHAN / PURDY SCOTT M | Europäisches Patentamt | 2025

    Freier Zugriff

    Poster: A TDM approach for latency reduction of ultra-reliable low-latency data in 5G

    Ganesan, Karthikeyan / Soni, Tapisha / Nunna, Swaroop et al. | IEEE | 2016