In this paper, we use time-series modeling to forecast taxi travel demand, in the context of a mobile application-based taxi hailing service. In particular, we model the passenger demand density at various locations in the city of Bengaluru, India. Using the data, we first shortlist time-series models that suit our application. We then analyse the performance of these models by using Mean Absolute Percentage Error (MAPE) as the performance metric. In order to improve the model performance, we employ a multi-level clustering technique where we aggregate demand over neighboring cells/geohashes. We observe that the improved model based on clustering leads to a forecast accuracy of 80% per km2. In addition, our technique obtains an accuracy of 89% per km2 for the most frequently occurring use case.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A multi-level clustering approach for forecasting taxi travel demand


    Beteiligte:
    Davis, Neema (Autor:in) / Raina, Gaurav (Autor:in) / Jagannathan, Krishna (Autor:in)


    Erscheinungsdatum :

    01.11.2016


    Format / Umfang :

    347592 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Understanding Taxi Travel Demand Patterns Through Floating Car Data

    Nuzzolo, Agostino / Comi, Antonio / Papa, Enrica et al. | Springer Verlag | 2018


    Travel Demand Forecasting: A Fair AI Approach

    Zhang, Xiaojian / Ke, Qian / Zhao, Xilei | IEEE | 2024

    Freier Zugriff

    Passenger travel demand forecasting

    National Research Council, Transportation Research Board, USA | TIBKAT | 1976


    Forecasting Air Travel Demand

    Zheng, Yafei / Lai, Kin / Wang, Shouyang et al. | TIBKAT | 2018


    Travel Demand Forecasting 2009

    Lemp, Jason D | Online Contents | 2009