Sensor setups consisting of a combination of 3D range scanner lasers and stereo vision systems are becoming a popular choice for on-board perception systems in vehicles; however, the combined use of both sources of information implies a tedious calibration process. We present a method for extrinsic calibration of lidar-stereo camera pairs without user intervention. Our calibration approach is aimed to cope with the constraints commonly found in automotive setups, such as low-resolution and specific sensor poses. To demonstrate the performance of our method, we also introduce a novel approach for the quantitative assessment of the calibration results, based on a simulation environment. Tests using real devices have been conducted as well, proving the usability of the system and the improvement over the existing approaches. Code is available at http://wiki.ros.org/velo2cam_calibration.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automatic extrinsic calibration for lidar-stereo vehicle sensor setups


    Beteiligte:
    Guindel, Carlos (Autor:in) / Beltran, Jorge (Autor:in) / Martin, David (Autor:in) / Garcia, Fernando (Autor:in)


    Erscheinungsdatum :

    01.10.2017


    Format / Umfang :

    1091360 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Automatic Extrinsic Calibration of Thermal Camera and LiDAR for Vehicle Sensor Setups

    Dalirani, Farhad / Heidari, Farzan / Rahman, Taufiq et al. | IEEE | 2023


    Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor Setups

    Beltran, Jorge / Guindel, Carlos / de la Escalera, Arturo et al. | IEEE | 2022


    LiDAR-Camera System Automatic Extrinsic Calibration in Rail Transit

    Wu, Qian / Zhang, Jin / Sheng, Jie et al. | IEEE | 2022



    Automatic Multi-camera Multi-LiDAR Extrinsic Calibration using Geometric Corners

    Chen, Feiyi / Zhang, Shuyang / Xie, Xupeng et al. | IEEE | 2022