Object detection (OD) is crucial to autonomous driving. On the other hand, unknown objects, which have not been seen in training sample set, are one of the reasons that hinder autonomous vehicles from driving beyond the operational domain. To addresss this issue, we propose a saliency-based OD algorithm (SalienDet) to detect unknown objects. Our SalienDet utilizes a saliency-based algorithm to enhance image features for object proposal generation. Moreover, we design a dataset relabeling approach to differentiate the unknown objects from all objects in training sample set to achieve Open-World Detection. To validate the performance of SalienDet, we evaluate SalienDet on KITTI, nuScenes, and BDD datasets, and the result indicates that it outperforms existing algorithms for unknown object detection. Notably, SalienDet can be easily adapted for incremental learning in open-world detection tasks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    SalienDet: A Saliency-Based Feature Enhancement Algorithm for Object Detection for Autonomous Driving


    Beteiligte:
    Ding, Ning (Autor:in) / Zhang, Ce (Autor:in) / Eskandarian, Azim (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.01.2024


    Format / Umfang :

    6827916 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Three-Feature Based Automatic Lane Detection Algorithm (TFALDA) for Autonomous Driving

    Yim, Y. / Oh, S. Y. / IEEE et al. | British Library Conference Proceedings | 1999


    Robust 3D Object Detection Based on Point Feature Enhancement in Driving Scenes

    Chen, Renjie / Zhang, Dongbo / Liu, Qinrui et al. | IEEE | 2024