Ship collision avoidance algorithms are the primary difficulty in autonomous navigation technology. We propose an autonomous collision avoidance method based on perception and maritime rules. By evaluating the collision danger, we provide early warning for ships to ensure navigation safety. In order to effectively solve the problem of uncoordinated collision avoidance behaviors caused by inconsistent division of encounter situations, our research optimizes the discrimination method based on the combination of the angle of gangway and heading intersection angle, establishes the role-symmetric encounter situation division algorithm, and determines the principle of collision avoidance compliant actions in multi-ship situations. The experiments of multi-ship collision avoidance in mixed complex situations comprehensively verify the effective performance of the autonomous collision avoidance algorithm based on perception and maritime rules, and provide strong support for its feasibility and superiority in practical applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Autonomous Collision Avoidance Algorithm Based on Perception and Maritime Rules


    Beteiligte:
    He, Yunqian (Autor:in) / Zhang, Bo (Autor:in) / Bao, Tao (Autor:in) / Wang, Xiaochuan (Autor:in) / Zhang, Shuai (Autor:in) / Jiang, Zhengyi (Autor:in)


    Erscheinungsdatum :

    23.05.2025


    Format / Umfang :

    1183978 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Perception for collision avoidance and autonomous driving

    Aufrere, R. / Gowdy, J. / Mertz, C. et al. | Tema Archiv | 2003


    Cooperative collision avoidance study of Maritime Autonomous Surface Ship

    Zhang, Di / Ma, Haowei / Chen, Linying et al. | IEEE | 2021


    Survey on Collision-Avoidance Navigation of Maritime Autonomous Surface Ships

    Wang, Chengbo / Wang, Ning / Xie, Guangming et al. | Springer Verlag | 2021


    PERCEPTION COLLISION AVOIDANCE

    KING ANDREW LEWIS / KLING RALPH MICHAEL / LIU YU et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    PERCEPTION COLLISION AVOIDANCE

    LIU YU / KING ANDREW LEWIS / RESCHKA ANDREAS CHRISTIAN et al. | Europäisches Patentamt | 2022

    Freier Zugriff