Vehicle taillight recognition is an important application for automated driving, especially for intent prediction of ado vehicles and trajectory planning of the ego vehicle. In this work, we propose an end-to-end deep learning framework to recognize taillights, i.e. rear turn and brake signals, from a sequence of images. The proposed method starts with a Convolutional Neural Network (CNN) to extract spatial features, and then applies a Long Short-Term Memory network (LSTM) to learn temporal dependencies. Furthermore, we integrate attention models in both spatial and temporal domains, where the attention models learn to selectively focus on both spatial and temporal features. Our method is able to outperform the state of the art in terms of accuracy on the UC Merced Vehicle Rear Signal Dataset, demonstrating the effectiveness of attention models for vehicle taillight recognition.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Attention-based Recurrent Convolutional Network for Vehicle Taillight Recognition


    Beteiligte:
    Lee, Kuan-Hui (Autor:in) / Tagawa, Takaaki (Autor:in) / Pan, Jia-En M. (Autor:in) / Gaidon, Adrien (Autor:in) / Douillard, Bertrand (Autor:in)


    Erscheinungsdatum :

    01.06.2019


    Format / Umfang :

    2339193 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    VEHICLE TAILLIGHT

    Europäisches Patentamt | 2015

    Freier Zugriff

    STRADDLED VEHICLE TAILLIGHT

    OHTA MITSUAKI / SAKATA KOHEI | Europäisches Patentamt | 2025

    Freier Zugriff

    Vehicle taillight assembly

    PENCAK JEFFREY | Europäisches Patentamt | 2022

    Freier Zugriff

    Motor vehicle taillight

    PUSCH FRANK / RUTHS THORSTEN | Europäisches Patentamt | 2016

    Freier Zugriff

    VEHICLE TAILLIGHT SYSTEM

    OH SE HO | Europäisches Patentamt | 2018

    Freier Zugriff