One of the main challenges in the real-world adoption of multi-Uncrewed Aerial Vehicle (UAV) systems lies in the specification of operations and the management of dynamic tasks in varied operational contexts. In this paper, we propose a multi-UAV planning architecture to reduce the level of specialized expertise necessary for handling multi-UAV systems. Furthermore, this work is the first step towards designing a multi-UAV planning architecture that integrates with the U-space services specified in EU regulatory 2021/664. We propose two declarative languages: (i) an Agent-Language for expressing mitigation and safety objectives for individual UAVs, and (ii) an Operation-Language to enable users to plan high-level multi-UAV operations based on the available resources. The languages enable automatic on-the-fly re-planning if any UAVs abort the mission unexpectedly. The initial result of the multi-UAV planning architecture is showcased in three simulated UAVs running as Software-In-The-Loop (SITL), to demonstrate its capabilities.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Towards Autonomous Multi-UAV U-Space Operation Planning




    Erscheinungsdatum :

    04.06.2024


    Format / Umfang :

    2291721 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Towards Persistent Space Observations through Autonomous Multi-Agent Formations

    Matthew P Vaughan / Javier Puig Navarro / Benjamin N Kelley et al. | NTRS


    Towards Persistent Space Observations through Autonomous Multi-Agent Formations

    Vaughan, Matthew / Kelley, Benjamin N. / Puig - Navarro, Javier et al. | AIAA | 2022


    Towards Persistent Space Observations through Autonomous Multi-Agent Formations

    Matthew P Vaughan / Javier Puig Navarro / Benjamin N Kelley et al. | NTRS


    Towards Persistent Space Observations Through Autonomous Multi-Agent Formations

    Vaughan, Matthew / Kelley, Benjamin N. / Puig-Navarro, Javier et al. | TIBKAT | 2022