The impact of deaths and injuries on families and society is increasing the willingness of the authorities to investigate the cause of the increasing traffic accidents day by day. It is important to emphasize that the majority of traffic accidents are attributed to driver distraction. The role of mobile phones and cigarette usage on driver distraction is a well-known fact. In this study, the authors focus on detecting mobile phone usage and smoking in-vehicle environment. The images collected with a mobile phone docked on the windshield and a yolov5s network is trained with manually labeled images. As a consequence of the study, the authors achieved to distinguish drivers and passengers. Also, they investigate to improve detecting other labeled classes such as ‘DriverHand’, ‘PassengerHand’, ‘DriverHandWithPhone’, etc.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Detection of Driver Distraction using YOLOv5 Network


    Beteiligte:
    Atas, Kubilay (Autor:in) / Vural, Revna Acar (Autor:in)


    Erscheinungsdatum :

    01.10.2021


    Format / Umfang :

    1845598 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    DRIVER DISTRACTION DETECTION

    HERMAN DAVID MICHAEL | Europäisches Patentamt | 2021

    Freier Zugriff

    Driver distraction detection

    HERMAN DAVID MICHAEL | Europäisches Patentamt | 2022

    Freier Zugriff

    DRIVER DISTRACTION DETECTION

    HERMAN DAVID MICHAEL | Europäisches Patentamt | 2021

    Freier Zugriff

    DRIVER DISTRACTION DETECTION SYSTEM

    HAMPIHOLI VALLABHA VASANT | Europäisches Patentamt | 2024

    Freier Zugriff

    DRIVER DISTRACTION DETECTION SYSTEM

    HAMPIHOLI VALLABHA VASANT | Europäisches Patentamt | 2016

    Freier Zugriff