We present two novel algorithms for multimodal, dense matching of two images using a variational approach. These algorithms complete and generalise our previous work by treating the case of semi-local energy functionals (G. Hermosillo et al., 2001). In brief, they are derived from the maximization of two statistical criteria (mutual information and correlation ratio) estimated from corresponding regions around each pixel (or voxel in the 3D case). As a second contribution, we present a result of existence and uniqueness of the solution of the abstract evolution problems associated to these algorithms, as well as those of the corresponding global algorithms. This is important since it shows the well-posedness of the problems to solve. We finish by showing some applications of our methods to one synthetic and four real examples.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Dense image matching with global and local statistical criteria: a variational approach


    Beteiligte:
    Hermosillo, G. (Autor:in) / Faugeras, O. (Autor:in)


    Erscheinungsdatum :

    01.01.2001


    Format / Umfang :

    799762 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Dense Image Matching with Global and Local Statistical Criteria: A Variational Approach

    Hermosillo, G. / Faugeras, O. / IEEE | British Library Conference Proceedings | 2001


    A variational approach to multi-modal image matching

    Chefd'Hotel, C. / Hermosillo, G. / Faugeras, O. | IEEE | 2001


    A Variational Approach to Multi-Modal Image Matching

    Chefd hotel, C. / Hermosillo, G. / Faugeras, O. et al. | British Library Conference Proceedings | 2001



    Variational Methods for Multimodal Image Matching

    Hermosillo, G. / ChefdHotel, C. / Faugeras, O. | British Library Online Contents | 2002