In order to assess environmental impacts of local traffic flow, a two-stage parameter tuning approach is proposed for recalibration of the Comprehensive Modal Emission Model (CMEM) using on-road emission measurements collected in Chinese cities. Based on the procedure comprising of grid search and nonlinear simplex optimization, the fuel- and emission-related parameters in the model are estimated to minimize the Mean Square Error (MSE) between model outputs and real measurements. In addition, a regression-based emission model is calibrated using the same data samples to compare performance. It is shown from the numerical results that the tuning process is able of improving the model prediction accuracy, especially concerning the CO emission, when comparing with the original CMEM model and the regression-based model. In addition, the emission models are, after the tuning process, applied together with a traffic simulation model to evaluate dynamic environmental effects of traffic in a case study.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Assessment of traffic environment using fine-tuned dynamic vehicle emission models


    Beteiligte:
    Wei Lei, (Autor:in) / Xiaoliang Ma, (Autor:in) / Hui Chen, (Autor:in)


    Erscheinungsdatum :

    01.09.2010


    Format / Umfang :

    1200948 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch