A deep reinforcement learning based multi-objective autonomous braking system is presented. The design of the system is formulated in a continuous action space and seeks to maximize both pedestrian safety and perception as well as passenger comfort. The vehicle agent is trained against a large naturalistic dataset containing pedestrian road-crossing trials in which respondents walked across a road under various traffic conditions within an interactive virtual reality environment. The policy for brake control is learned through computer simulation using two reinforcement learning methods i.e. Proximal Policy Optimization and Deep Deterministic Policy Gradient and the efficiency of each are compared. Results show that the system is able to reduce the negative influence on passenger comfort by half while maintaining safe braking operation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-Objective Autonomous Braking System using Naturalistic Dataset


    Beteiligte:
    Vasquez, Rafael (Autor:in) / Farooq, Bilal (Autor:in)


    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    209088 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multi-Objective Autonomous Braking System using Naturalistic Dataset

    Vasquez, Rafael / Farooq, Bilal | ArXiv | 2019

    Freier Zugriff

    Autonomous Braking and Throttle System: A Deep Reinforcement Learning Approach for Naturalistic Driving

    Dubey, Varshit S. / Kasad, Ruhshad / Agrawal, Karan | ArXiv | 2020

    Freier Zugriff

    Autonomous braking system and autonomous braking method

    CHEN SHUN-HUNG / CHEN JIUN-JIE / CHANG LIANG-CHENG | Europäisches Patentamt | 2016

    Freier Zugriff

    AUTONOMOUS BRAKING SYSTEM AND AUTONOMOUS BRAKING METHOD

    CHEN SHUN-HUNG / CHEN JIUN-JIE / CHANG LIANG-CHENG | Europäisches Patentamt | 2016

    Freier Zugriff

    Integrating Naturalistic Insights in Objective Multi-Vehicle Safety Framework

    Del Re, Enrico / Aghanouri, Amirhesam / Olaverri-Monreal, Cristina | IEEE | 2024