Avoiding traffic congestion phenomena is an important aspect of efficient transportation infrastructure (e.g. toll roads) management. Traffic congestion phenomena can be avoided by forecasting volume traffic data. This paper aims to analyze how specific factors and parameters affect the behavior of traffic volume, like vehicle category, date, and weather data at a given timestamp and place. Moreover, the procedure of data prepossessing is presented to produce a cleaner data set that gives more fundamental information. Subsequently, spatio-temporal toll road prediction is achieved through a multi-layer perceptron. Finally, the proposed low-cost method is evaluated using real-life data from a toll plaza, while the experimental results show the efficiency of the proposed method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    MLP for Spatio-Temporal Traffic Volume Forecasting




    Erscheinungsdatum :

    21.04.2021


    Format / Umfang :

    692226 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Review of spatio-temporal models for short-term traffic forecasting

    Gang, Chang / Shouhui, Wang / Xiaobo, Xiao | IEEE | 2016


    PFNet: Large-Scale Traffic Forecasting With Progressive Spatio-Temporal Fusion

    Wang, Chen / Zuo, Kaizhong / Zhang, Shaokun et al. | IEEE | 2023


    Spatio-Temporal Graph Attention Convolution Network for Traffic Flow Forecasting

    Liu, Kun / Zhu, Yifan / Wang, Xiao et al. | Transportation Research Record | 2024


    Spatio‐temporal adaptive graph convolutional networks for traffic flow forecasting

    Ma, Qiwei / Sun, Wei / Gao, Junbo et al. | Wiley | 2023

    Freier Zugriff

    Spatio‐temporal adaptive graph convolutional networks for traffic flow forecasting

    Qiwei Ma / Wei Sun / Junbo Gao et al. | DOAJ | 2023

    Freier Zugriff