How likely is it that a driver notices a person standing on the side of the road? In this paper we introduce the concept of pedestrian detectability. It is a measure of how probable it is that a human observer perceives pedestrians in an image. We acquire a dataset of pedestrians with their associated detectabilities in a rapid detection experiment using images of street scenes. On this dataset we learn a regression function that allows us to predict human detectabilities from an optimized set of image and contextual features. We exploit this function to infer the optimal focus of attention for pedestrian detection. With this combination of human perception and machine vision we propose a method we deem useful for the optimization of Human-Machine-Interfaces in driver assistance systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Pedestrian detectability: Predicting human perception performance with machine vision


    Beteiligte:
    Engel, D. (Autor:in) / Curio, C. (Autor:in)


    Erscheinungsdatum :

    01.06.2011


    Format / Umfang :

    1523383 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Pedestrian Detectability: Predicting Human Perception Performance with Machine Vision

    Engel, D. / Curio, C. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2011


    Perception of Pedestrian Traffic Signals by Pedestrians with Varying Levels of Vision

    Scott, Alan C. / Atkins, Katherine N. / Bentzen, Billie Louise et al. | Transportation Research Record | 2012



    "If you could see me through my eyes": Predicting Pedestrian Perception

    Petzold, Julian / Wahby, Mostafa / Stark, Franek et al. | ArXiv | 2022

    Freier Zugriff

    Pedestrian Perception about Facility of Pedestrian Crossings

    Muhammad Mulyadi Agah | DOAJ | 2018

    Freier Zugriff