Nearest neighborhood consistency is an important concept in statistical pattern recognition, which underlies the well-known k-nearest neighbor method. In this paper, we combine this idea with kernel density estimation based clustering, and derive the fast mean shift algorithm (FMS). FMS greatly reduces the complexity of feature space analysis, resulting satisfactory precision of classification. More importantly, we show that with FMS algorithm, we are in fact relying on a conceptually novel approach of density estimation, the fast kernel density estimation (FKDE) for clustering. The FKDE combines smooth and non-smooth estimators and thus inherits advantages from both. Asymptotic analysis reveals the approximation of the FKDE to standard kernel density estimator. Data clustering and image segmentation experiments demonstrate the efficiency of FMS.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Applying neighborhood consistency for fast clustering and kernel density estimation


    Beteiligte:
    Kai Zhang, (Autor:in) / Ming Tang, (Autor:in) / Kwok, J.T. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    1955178 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Improved Fast Gauss Transform and Efficient Kernel Density Estimation

    Yang, G. / Duraiswami, R. / Gumerov, N. et al. | British Library Conference Proceedings | 2003


    Improved fast gauss transform and efficient kernel density estimation

    Yang, / Duraiswami, / Gumerov, et al. | IEEE | 2003