For robots to work effectively, the availability of a map with detailed information surrounding the workspace is an important requirement for indoor and outdoor tasks. This is usually achieved with using visual odometry techniques with feature-based methods. In this paper, we compare the performance of three different feature extraction methods: Scale Invariant Feature Transform (SIFT), Speed Up Robust Features (SURF) and Oriented FAST Rotated BRIEF (ORB). This paper presents experimental results on standard evaluation datasets and all experiments use measurement of the number of image correspondences as well as the ratio of good matched for the evaluation purpose. The results of experiments demonstrate that the performances of three methods in processing time, matching capability and accuracy. SIFT presents its stability in most scenarios although it is very slow. SURF is faster than SIFT and outperform SIFT on some scenarios. ORB is the most efficient feature and shows strong performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The Comparison of Different Visual Features for Visual Odometry


    Beteiligte:
    Jiang, Yuehan (Autor:in) / Wang, Qing (Autor:in) / Dong, Chaoyang (Autor:in) / Zhou, Min (Autor:in) / Zhong, Kewei (Autor:in)


    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    1043696 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Visual Odometry

    Nister, D. / Naroditsky, O. / Bergen, J. et al. | British Library Conference Proceedings | 2004


    Visual odometry

    Nister, D. / Naroditsky, O. / Bergen, J. | IEEE | 2004


    Learning good features for visual odometry

    TRAN QUOC-HUY / CHANDRAKER MANMOHAN / KIM HYO JIN | Europäisches Patentamt | 2020

    Freier Zugriff

    Automotive visual odometry

    Buczko, Martin / Shaker Verlag | TIBKAT | 2018


    Practical Infrared Visual Odometry

    Borges, Paulo Vinicius Koerich / Vidas, Stephen | IEEE | 2016