This paper explores the difficulties of massive multi-user (MU) multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) detection with low-precision quantization. To solve these problems, we propose QMMO-Net, a novel deep unfolding (DU)-based detection scheme that fuses the architecture specialized for quantized MIMO-OFDM detection with data-driven techniques. To handle the severe distortions from coarse quantization, we add multiple trainable parameters to increase the model flexibility. With the help of the proposed differentiable proximal operator and DU tools, these parameters including a vector can be jointly optimized. Simulation results demonstrate that QMMO-Net outperforms traditional and DU-based detection algorithms in coarsely quantized MU-MIMO-OFDM systems. By combining the power of domain knowledge with data, our QMMO-Net has strong robustness to the non-linear effects of coarse quantization and the co-channel interference caused in high user load scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Unfolding-based Detection for Quantized Massive MU-MIMO-OFDM Systems


    Beteiligte:
    Liu, Changjiang (Autor:in) / Thompson, John (Autor:in) / Arslan, Tughrul (Autor:in)


    Erscheinungsdatum :

    01.06.2022


    Format / Umfang :

    2989099 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Hybrid Beamforming in mmWave MIMO-OFDM Systems via Deep Unfolding

    Chen, Kuan-Yuan / Chang, Hsin-Yuan / Chang, Ronald Y. et al. | IEEE | 2022


    Channel Estimation for FDD Massive MIMO OFDM Systems

    Hu, Die / He, Lianghua | IEEE | 2017


    Deep Unfolding for Fast Linear Massive MIMO Precoders under a PA Consumption Model

    Feys, Thomas / Mestre, Xavier / Peschiera, Emanuele et al. | IEEE | 2023



    Phase-Only OFDM Communication for Downlink Massive MIMO Systems

    Wiffen, Fred / Bocus, Mohammud Z. / Doufexi, Angela et al. | IEEE | 2018