This paper studies the car-following behaviors of individual drivers in real traffic scenes using the trajectory datasets provided by Next Generation SIMulation (NGSIM) program. We calibrate Intelligent Driver Model (IDM) and MIcroscopic Traffic SIMulator (MITSIM) car-following models by using Genetic Algorithm (GA), with a special emphasize on MITSIM model, because there are already some nice works on the calibration of IDM model. We find that after calibration, the tracking gap errors of both models are normally below 30%. We also find that the parameter set (α+, β+, γ+, α, β, γ) of MITSIM model obtained from different sampling trajectories roughly locate in a low-dimensional hyperplane rather than randomly distribute in the entire parameter space.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Calibration of MITSIM and IDM car-following model based on NGSIM trajectory datasets


    Beteiligte:
    Chen, Chenyi (Autor:in) / Li, Li (Autor:in) / Hu, Jianming (Autor:in) / Geng, Chenyao (Autor:in)


    Erscheinungsdatum :

    01.07.2010


    Format / Umfang :

    1561328 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Calibration of an interrupted traffic flow system using NGSIM trajectory data sets

    Fang, Yaling / Shi, Zhongke / Cao, Jinliang | IEEE | 2014


    Developing extended trajectory database for heterogeneous traffic like NGSIM database

    Raju, Narayana / Arkatkar, Shriniwas / Easa, Said et al. | Taylor & Francis Verlag | 2022



    Analysis of Merging Behavior Parameters Using NGSIM Data Sets

    Li, Gen / Sun, Lu / Pan, Yiyong et al. | ASCE | 2016