Trajectory prediction is the core technology of next generation air traffic system, flight data mining can offer great favor to implement of trajectory prediction. In this paper, a trajectory prediction method based on space-time clustering of historical flight data is proposed. Firstly, trajectories are sampled based on the key points and expressed as sets of sample points. Then, cluster sample points by using local density based spatial clustering algorithm with noise (LDBSCAN). LDBSCAN combines local outlier factor (LOF) with density based spatial clustering algorithm (DBSCAN), it can erase the influence of outlier sample points. After removing outlier points’ information, the rest of sample points can represent normal trajectories’ regular pattern. Fuse sample points as a experiential trajectory by using inverse distance weighting (IDW). Finally, considering the existing trajectory information, predict the trajectory in a future time according the experiential trajectory and its error character. At the end of this paper, an experiment shows that this method can erase the abnormal trajectories’ influence and predict trajectory accurately..


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Flight Trajectory Prediction Method based on Trajectory Clustering


    Beteiligte:
    Wang, Guangchao (Autor:in) / Chen, Hui (Autor:in) / Liu, Kun (Autor:in) / Guo, Ruoyu (Autor:in) / Wei, Yongliang (Autor:in)


    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    215761 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A trajectory prediction model for commercial flight based on representative trajectory

    Zhao, Weifan / Tong, Qiang / Cao, Jianzhi et al. | SPIE | 2022


    Flight Trajectory Tracking Method Based on Prediction Calculation

    Liu, Guanbang / Qian, Haili / Chen, Yichao et al. | Springer Verlag | 2024


    UAV Trajectory Prediction Based on Flight State Recognition

    Zhang, Jiandong / Shi, Zhuoyong / Zhang, Anli et al. | IEEE | 2024


    A novel clustering method for ship trajectory prediction

    Yang, Junjie / Liu, Jin / Li, Xingye et al. | IEEE | 2024


    Flight Trajectory Prediction Based on Hybrid- Recurrent Networks

    Schimpf, Nathan / Knoblock, Eric J. / Wang, Zhe et al. | IEEE | 2021