In urban areas with tall buildings and narrow streets, signal distortions from multipath and non-line-of-sight (NLOS) conditions significantly affect the localization accuracy using Long-Term Evolution (LTE) signals. To address these limitations and improve localization accuracy, we propose a teacher-student transfer learning framework based on graph neural network (GNN), utilizing LTE networks and receiver arrays. For the challenges of limited real data, our proposed model can effectively improve performance through fine-tuning with a generated synthetic dataset. Experimental findings validate the efficacy of our method, showcasing significant accuracy improvements of 41.3% and 53.3% for synthetic and real data, respectively, compared to existing techniques. Our approach outperforms conventional localization methods and alternative machine learning models, emphasizing its superior performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Transfer Learning with Knowledge Distillation for Urban Localization Using LTE Signals


    Beteiligte:
    Li, Disheng (Autor:in) / Zhao, Kai (Autor:in) / Lu, Jun (Autor:in) / Zhang, Yawei (Autor:in) / An, Xiangdong (Autor:in) / Tay, Wee Peng (Autor:in) / Gulam Razul, Sirajudeen (Autor:in)


    Erscheinungsdatum :

    07.10.2024


    Format / Umfang :

    914874 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Knowledge Distillation-Based Learning Model Propagation for Urban Air Mobility

    Xiong, Kai / Xie, Juefei / Wang, Zhihong et al. | IEEE | 2024


    KNOWLEDGE DISTILLATION TECHNIQUES

    MALACH ERAN / KAPLUN GAL / SHALEV-SHWARTZ SHAI | Europäisches Patentamt | 2023

    Freier Zugriff

    Decoupled Knowledge Distillation

    Zhao, Borui / Cui, Quan / Song, Renjie et al. | ArXiv | 2022

    Freier Zugriff

    Knowledge Distillation with Refined Logits

    Sun, Wujie / Chen, Defang / Lyu, Siwei et al. | ArXiv | 2024

    Freier Zugriff

    Localization Distillation for Object Detection

    Zheng, Zhaohui / Ye, Rongguang / Hou, Qibin et al. | ArXiv | 2022

    Freier Zugriff