There is a lack of approaches to derive accident scenarios automatically for the testing of Autonomous Drive systems. Current approaches that generate test scenarios do not scale due to the manual work required. Machine learning provides the possibility to automate such tasks. In this paper, an automated approach based on Recurrent Neural Networks to generate accident scenarios is presented. Based on a prototype, our approach is evaluated on temporal data from simulated in-vehicle and V2X data to automatically generate new accident scenarios. The results confirm that generated scenarios resemble the accidents that took place in an exclusive test set.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Accident Scenario Generation with Recurrent Neural Networks


    Beteiligte:
    Jenkins, Ian Rhys (Autor:in) / Gee, Ludvig Oliver (Autor:in) / Knauss, Alessia (Autor:in) / Yin, Hang (Autor:in) / Schroeder, Jan (Autor:in)


    Erscheinungsdatum :

    01.11.2018


    Format / Umfang :

    1291068 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Accident Scenario Generation using Driver Behavior Model

    Jawad, Abdul / Whitehead, Jim | IEEE | 2024


    Traffic and accident scenario

    Mauro,V. / Politecnico di Torino,Dip.di Energetica,IT | Kraftfahrwesen | 2005


    Hazard/Accident Scenario Evaluation Criteria

    Mahn, J. / System Safety Society (U.S.) | British Library Conference Proceedings | 2006


    Hazard/Accident Scenario Evaluation Criteria

    Mahn, J. / System Safety Society | British Library Conference Proceedings | 2002


    Traffic accident severity prediction method based on recurrent neural network

    XU XUECAI / QIAN CHENG / XIAO DAIQUAN | Europäisches Patentamt | 2024

    Freier Zugriff