In this paper, we propose a coded distributed computing (CDC)-based vehicular edge computing (VEC) framework. The framework allows a task vehicle (TV) equipped with the dual-function radar communication (DFRC) to offload its computing tasks to the nearby service vehicles (SVs) using the (m, k) maximum distance separable (MDS). The framework is thus able to address the straggler effect that is typically caused by the high mobility of the vehicles. We then formulate an optimization problem for the TV that aims to i) minimize the overall computing latency, ii) minimize the offloading cost, and iii) maximize the radar range subject to the connection duration. For this, we optimize the MDS parameters, i.e., the number of selected SVs (m) and the number of subtasks for coding (k), and the fractions of power allocated to the radar and communication functions. Under the high dynamic vehicular environment, the uncertainty of the SVs’ computing resource and networking resources, we propose a deep reinforcement learning (DRL) algorithm based on Double Deep Q-Network (DDQN) to solve the TV’s problem. To further improve the performance, we propose to incorporate a parameter norm penalty in the loss function. Simulation results show that the proposed DDQN algorithm outperforms both the DQN algorithm and the non-learning algorithm in terms of computation latency, radar range, and offloading cost.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Coded Distributed Computing For Vehicular Edge Computing With Dual-Function Radar Communication


    Beteiligte:
    Nguyen Thi, Hoai Linh (Autor:in) / Le Hoang, Hung (Autor:in) / Luong, Nguyen Cong (Autor:in) / Nguyen, Tien Hoa (Autor:in) / Xiao, Sa (Autor:in) / Tan, Junjie (Autor:in) / Niyato, Dusit (Autor:in)


    Erscheinungsdatum :

    10.10.2023


    Format / Umfang :

    1494536 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Coded Computing for Distributed Machine Learning in Wireless Edge Network

    Dhakal, Sagar / Prakash, Saurav / Yona, Yair et al. | IEEE | 2019



    Traffic Collision Avoidance with Vehicular Edge Computing

    Hasarinda, Ravishka / Tharuminda, Theekshana / Palitharathna, Kapila et al. | IEEE | 2023


    LEO Satellite-Assisted Vehicular Edge Computing

    Li, Caiguo / Shang, Bodong / Feng, Jie et al. | IEEE | 2023


    Vehicular Edge Computing for Multi-Vehicle Perception

    Tang, Sihai / Gu, Zhaochen / Fu, Song et al. | IEEE | 2021